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� Abstract
Polychromatic flow cytometry results in complex, multivariate datasets. To date, tools
for the aggregate analysis of these datasets across multiple specimens grouped by differ-
ent categorical variables, such as demographic information, have not been optimized.
Often, the exploration of such datasets is accomplished by visualization of patterns
with pie charts or bar charts, without easy access to statistical comparisons of measure-
ments that comprise multiple components. Here we report on algorithms and a graphi-
cal interface we developed for these purposes. In particular, we discuss thresholding
necessary for accurate representation of data in pie charts, the implications for display
and comparison of normalized versus unnormalized data, and the effects of averaging
when samples with significant background noise are present. Finally, we define a statis-
tic for the nonparametric comparison of complex distributions to test for difference
between groups of samples based on multi-component measurements. While originally
developed to support the analysis of T cell functional profiles, these techniques are ame-
nable to a broad range of datatypes. Published 2011 Wiley-Liss, Inc.y
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THE proliferation of polychromatic flow cytometry, in terms of instrumentation

(1,2), reagents (3,4), data analysis techniques (5,6), and applications (1,7), has led to

the generation of highly complex datasets on a routine basis. The dimensionality of

these datasets is high, providing enormous challenges for analysis and data reduction

to interpret results. Flow cytometry data analysis software has been designed to help

with this, and large-scale efforts toward automation are underway. However, these

efforts have been primarily directed at the single-sample analysis arena; the post-

processing of complex datasets remains an area requiring innovation.

When analyzing T cell responses, many laboratories routinely measure multiple

different functional components on a cell-by-cell basis, e.g., production of IFNc,
IL2, and/or TNF. There is evidence that the pattern of production of these cyto-

kines, termed ‘‘quality’’ (8), rather than the magnitude of the response, may be an

important correlate of protection against pathogens (9–13). A single sample mea-

surement may be thought of as a vector of responses; in this example, it would be a

seven-element vector that comprises the percentage of T cells that made each

unique combination of the three cytokines. The complexity of this analysis (and

size of the measurement vector) grows geometrically with each additional measure-

ment, such as CD4 vs. CD8, restriction to particular differentiation stages (14), or

inclusion of additional functional outcomes. The goal of the analyses is often to

define the element (or combination of elements) within this vector, for which mag-

nitude correlates with a given biological result. As an example, protection afforded

by a vaccine against Leishmania major was correlated with the magnitude of only

those CD4 cells that simultaneously produced three cytokines—a fraction of the

total CD4 response (11).
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To do this comparison, it becomes necessary to simulta-

neously analyze many measurement vectors, grouped by vari-

ous categorical variables that describe each sample: e.g., treat-

ment, gender, age group, or other experimental conditions.

Researchers require graphical interfaces to easily display mea-

surement vectors in forms like bar charts or pie charts, where

different subsets of individuals can be grouped on the basis of

any (combination) of categories. In some cases, averaging (or

other mathematical operations) across subsets of individuals

is also desired.

To support this mode of data exploration and statistical

analysis, we developed a set of algorithms implemented in an

Apple MacTM-based software application named SPICE

(‘‘Simplified Presentation of Incredibly Complex Evalua-

tions’’). SPICE is supported and distributed by the National

Institute of Allergy and Infectious Diseases, NIH, and is freely

available (http://exon.niaid.nih.gov/spice). Currently, SPICE

supports the analysis and display of a single measurement type

(e.g., frequency or MFI); development to support multivariate

analysis is underway.

Here we report on the algorithms and techniques we used

in developing this application and analysis platform, including

a unique implementation of a statistical test to compare mea-

surement vectors (distributions) between two groups of sam-

ples, so that developers can implement similar tests and dis-

plays in other software applications. In addition, we highlight

important features of the analysis and presentation of this

type of data. While original implementation and examples

shown here are based on the analysis of antigen-specific T

cells, none of the algorithms are specific to that domain; we

routinely use SPICE to analyze and present any complex data-

sets that are described by multiple categorical variables,

including demographic data.

METHODS

Data

Data used in this manuscript are either artificial (Fig. 2),

or from studies of HIV-specific T cell representation in

infected subjects collected in our laboratory. Standard intracel-

lular cytokine staining assays were used. As all data are purely

for illustration of algorithms and displays, thus no informa-

tion about the subjects or assay results is provided. All human

samples were collected under NIAID IRB approval. Flow cyto-

metry data was analyzed using FlowJo v9.1 (TreeStar, Ashland,

OR). Background subtraction and formatting of exported data

from FlowJo was performed with Pestle v1.6.2 (see below).

Statistical analysis and display of multicomponent distribu-

tions was performed with SPICE v5.1 (freely available from

http://exon.niaid.nih.gov/spice/).

Preprocessing of Data for SPICE

A significant power of SPICE is the ability to easily navi-

gate complex data to show distributions and calculate statistics

on subsets of measurements grouped, overlaid, or compared

on the basis of different categorical descriptors. Many such

descriptors are not necessarily part of the exported flow cyto-

metry data, such as demographic or other patient information.

To facilitate the analysis of such datasets, we created a data

pre-processing program. Pestle handles such functions as

background subtraction (e.g., for functional data), editing of

the primary dataset, creation of additional categorical vari-

ables, and merging with other databases to provide additional

categorical descriptors for each sample. Pestle is freely avail-

able by request from MR.

Data Computation for Graphical Display

In general, SPICE displays measurement values across a

number of categories, for a group of subjects. If the number of

categories is n and the number of subjects is m, define a mea-

surement value as Vij where 1 � i � n and 1 � j � m. Further

define a normalized measurement value as the proportion out

of all measurements for a given subject (i.e., each value becomes

the fraction of the total response within a subject), as V 0
ij:

V 0
ij ¼

VijPn
k¼1 Vkj

One visualization of this data is a point-chart, where a sin-

gle point is drawn for each of the m subjects, vertically aligned

for each of the n categories. These could be represented as abso-

lute values (Vij), or normalized values (V 0
ij). A bar chart could

also be shown, where each bar illustrates a summary of the dis-

tribution of the m values for each category: e.g., interquartile

range, min-max, or a bar drawn from zero to the average. The

average values for the absolute or normalized distributions are

defined as the measurement vectors X and X0:

Xi ¼
Pm

k¼1 Vik

m
X 0
i ¼

Pm
k¼1 V

0
ik

m

Another visualization of the data values is a pie chart. In

general, the size of each pie slice Pi is the average value for a

given category, normalized to the total of the average measure-

ments across all categories (such that the sum of all P 0
i is 1). It

is important to note that the vector Pi will not in general be

the same as the vector P 0
i ; these two representations convey

different information as discussed in Results.

Pi ¼ XiPn
k¼1 Xk

P0
i ¼

X 0
iPn

k¼1 X
0
k

RESULTS

Thresholding of Data for Pie Charts

Pie charts are often used to represent measurement vec-

tors; they can quickly convey patterns of distributions (albeit

with shortcomings such as the inability to convey the total

magnitude or underlying variability). However, negative

values cannot be represented in a pie chart. Negative values

arise in measurement distributions as a consequence of back-

ground subtraction. Negative values result because of mea-

surement and natural errors (i.e., sometimes the measurement

for a stimulated sample is smaller than that for the unstimu-

lated control; a background subtraction yields a value less than
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zero). To represent these graphically, the negative values must

be set to zero. However, doing so only for negative values will

systematically bias the overall dataset, by only increasing some

values—thus, the average across all measurements, after

thresholding negative values to zero, is greater than it was

before thresholding. It is notable that there will be small posi-

tive values that are also essentially equivalent to background

(and should be zero). The same error distribution leading to

negative values will lead as often to positive values for meas-

urements that are nominally zero (Fig. 1).

A reasonable approach to analyzing data where threshold-

ing is required is to set all measurements below some small

positive value to be zero. This approach has two significant

benefits: first, it removes the systematic bias introduced by

zeroing only negative values, by reducing as many values

(from small positive values to zero) as increasing (from nega-

tive to zero), thus leaving the total and average unchanged for

the distribution. Second, this process removes error intro-

duced by including small positive values in representational

analyses; i.e., by setting values too small to be distinguished

from background to zero, they will not contribute to distribu-

tions being displayed.

The difficulty is the determination of what value to use for

this thresholding. This value should be at the upper limit of the

distribution of measurements that are nominally zero, i.e., the

upper limit for background-corrected ‘‘negative’’ measure-

ments. Most of the time, however, such distributions are not

measured and this limit is undefined. One approach is to

assume that the distribution of background values is symmetric

around zero: an estimate of the upper range can then be made

by examination of the range of negative values and choosing a

value near the lower extent of their range (purple arrow, Fig. 1);

a threshold is chosen as the same absolute value (green line, Fig.

1). In this example, the 75th percentile of the values below zero

is chosen as a fairly robust measure of the extent of the distribu-

tion. With a large number of measurements, a more extreme

percentile could be used, such as the 90th. In order for the 90th

percentile to be reasonably robust, there should be at least 100

measurement values in the distribution (ensuring that there are

at least five measurements below the 90th percentile of the fifty

negative values). In the example, choosing the 75th percentile

results in 87.5% of nominally-negative values being set to zero:

the 50% that are negative and 75% of those that are positive. A

more extreme threshold would also zero more ‘‘true’’ (but low)

positive values.

The importance of this threshold should not be underesti-

mated. By zeroing all measurements below this small positive

value, their effect on summary statistics (such as a mean) is

moderated. This reduces noise and possible artefacts in the

visualization. Overall, this ensures that the statistics and graphs

more accurately reflect the positive response distribution.

Statistical Comparison of Multicomponent

Distributions

Typically, distributions of measurements are compared by

parametric (e.g., Students t test) or nonparametric (e.g.,

Wilcoxon rank test) algorithms. However, there is a need for

simple, widely-applicable (i.e., not too many assumptions)

tests that can be used to compare multicomponent distribu-

tions (distributions of measurement vectors). For example, we

would like to determine if the pattern of representation of

subsets of T cells for one group of individuals is the same or

different from the pattern for another group. Each pattern is

represented by a measurement vector. The null hypothesis is

that the distribution of vectors for each group come from the

same distribution and are not distinct.

Figure 1. Thresholding distributions to eliminate negative values.

PBMC were stimulated with (‘‘Stimulated’’) or without (‘‘Back-

ground’’) antigen; the proportion of T cells producing cytokine is

shown as histograms. The top panel shows the results for the con-

trol, unstimulated cultures; small levels of background (up to 0.1%

of T cells) are evident. The red line is an approximation of the dis-

tribution. The middle panel shows the results for the stimulated

cultures. A low proportion of positives is evident, the distribution

of which is represented by the blue line. To obtain a distribution

of the positive event magnitudes, the background value for each

culture is subtracted from this measurement; the resulting distri-

bution is shown at bottom. The major set of negative cultures is

now centered on zero, with a symmetric spread arising from mea-

surement and experimental errors. A small positive threshold

(green) is chosen based on an assumption that the negative cul-

tures are symmetrically distributed and estimating the extent of

that distribution from the values below zero (i.e., purple line); for

further analysis or display of this distribution, those values can be

set to zero. This does not introduce a systematic bias, and statis-

tics will reflect values principally from true positive cultures.
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A metric that can be used for such a test is based on a

chi-squared analysis. For each component of a distribution

(‘‘slice’’ in a pie chart), a chi-squared-like value is computed.

These values are summed over all categories; this sum (v2) is a
metric by which the distributions can then be compared.

Specifically, we are given two measurement vectors X and

Y (see also Methods). Each individual measurement for each

of n categories is given by Xi and Yi (1 � i � n). These might

represent the background-subtracted frequencies of antigen-

specific cells making different combinations of cytokines: X1

and Y1 would be the average frequencies of IL21IFNc2TNF2

cells for subjects in the two groups, respectively; X2 and Y2

could be IL21IFNc1TNF2, and so forth for all seven combina-

tions of the three cytokines. Define the total for each distribu-

tion (TX and TY):

TX ¼
Xn
i¼1

Xi TY ¼
Xn
i¼1

Yi

For each category, we define the expected measurement

values EX and EY based on the null hypothesis (no difference

between X and Y). Then, the differences between the actual

measured values and the expected values are Dx and Dy:

EX
i ¼ ðXi þ YiÞ3 TX

TX þ TY
EY
i ¼ ðXi þ YiÞ3 TY

TX þ TY

DX
i ¼ Xi � EX

i DY
i ¼ Yi � EY

i

The normalized chi-squared sum is then defined as fol-

lows, setting to zero any term where Ei 5 0:

v2 ¼
Xn
i¼1

DX
i 3DX

i

EX
i

þ DY
i 3DY

i

EY
i

� �

A statistical comparison of the two distributions is accom-

plished nonparametrically by a partial permutation test. (Note

that for distributions with large numbers of subjects, a complete

permutation test is impractical; thus, a partial permutation test

is performed by Monte Carlo simulation). In this test, all sam-

ples in the two groups are aggregated into a single list. For a sin-

gle iteration, each sample is randomly assigned to one of two

test groups in the same proportions as the original groups. The

v2 for the test groups is compared to the original measure-

ment groups. After thousands of iterations, the fraction of

comparisons which resulted in a larger (more extreme) v2

than the measured comparison is determined, and defined as

the ‘‘P’’ value. This value represents the probability of achiev-

ing a difference more extreme than the measured difference.

Because this is a nonparametric permutation test, it can

only be performed on distributions with more than one sam-

ple per group. The number of samples and the number of

iterations determines the minimum observable P value. Spe-

cifically, P values less than or equal to 0.05 can only be

attained when there are at least three samples in each group;

the minimum P value observable is inversely related to the

number of permutations; with 1,000 iterations, the lowest P

value is P 5 1023 (1/1,000). Note that the number of itera-

tions does not affect the magnitude of the estimated P value,

only the precision with which it is determined.

The proposed test statistic is derived from a simple anal-

ogy with a Chi-squared statistic; this makes it appealing and

fairly intuitive, and we believe useful for many different types

of analyses. The permutation-based testing algorithm means

that no specific form of the distribution of the statistic needs

to be assumed, making it applicable across a wide variety of

problems. A few characteristics of this test are important to

note, however. First, this is a global test of whether the distri-

bution of the vectors differs between the two groups. There-

fore, any differences between the groups may be picked up by

this test, including inter-group differences in the measurement

variability. This is important to consider when the two groups

have vectors of proportions based on systematically and dra-

matically different numbers of events. Another limitation of

the global test is that it does not allow for a listing of the indi-

vidual categories which are or are not different between the

two groups, but rather for a judgment of whether there is evi-

dence that the groups differ in any way. In addition, the test is

based on an unpaired, two group comparison. In the case of

paired data, a test that took advantage of that structure in

building a permutation distribution would be more appropri-

ate. Finally, there are many other possible test statistics one

could consider here; it would certainly be possible to choose a

test statistic that puts more or less weight on certain combina-

tions (for example, those that are rare), and might be possible

to increase the efficiency of the test by implementing a differ-

ent statistic or algorithm that more explicitly took into

account the within-individual correlation structure.

Multiple Comparisons Adjustments

SPICE provides the ability to compare two subsets of

data for any given category using a Student’s t test or a Wil-

coxon rank test. Given the complexity of the datasets, this can

result in significant Type 1 errors due to the sheer number of

different categories and subsets that are simultaneously com-

pared. Simple adjustment for multiple comparisons is prob-

lematic, since the number of comparisons that are actually

performed may be difficult to ascertain. We advocate a two-

step approach: first, use the overall distribution comparison

statistic described above. In those cases where the distributions

are statistically significantly different, the individual categories

can be inspected to determine which contribute to the overall

difference. The implementation of multiple comparisons

adjustment is best left to the researcher, who can evaluate the

necessity in the context of the overall experiment.

Impact of Normalization

Normalization can lead to very different interpretations

and statistical comparisons of a distribution; it is important to

be able to analyze both normalized and un-normalized data.

For analysis of cytokine responses, we refer to the normalized

distribution as the ‘‘quality’’ of the response (8). In this con-

text, ‘‘normalization’’ means representing each measurement

value as its relative contribution to the total of all measure-
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ments for that sample—in other words, converting absolute

values to ‘‘% of total.’’ For the graphics, the normalized mea-

surement vectors X0 are used in place of the raw measurement

vectors X (see methods).

As an example, see Figure 2. In Figure 2A, the distribution

of three subsets is given for two individuals. The overall repre-

sentation of the three subsets in Subject 2 is 50% greater than

for Subject 1, leading to disparate points in the chart of the abso-

lute unnormalized values (left panel). After normalizing to the

total representation of only these three subsets, it is evident that

the relative (normalized) distributions are identical in composi-

tion (right panel), despite differing in magnitude. A contrasting

result can be seen in Figure 2B. Here, data from 10 individuals is

analyzed; nine are very similar and one is an outlier. A pie chart

visualization of the normalized data is quite different than the

un-normalized data, because of the relative weighting. For the

normalized data, the outlier sample is weighted by its representa-

tion in the sample set (i.e., one-tenth); in the unnormalized dis-

play, the outlier sample is weighted by the magnitude of the

measurement. The unnormalized distribution is what an analysis

of a mixture of an equal number of cells from each of the 10

individuals would look like, but it does not necessarily represent

accurately any (or perhaps even most) of the individual samples.

Impact of Noise on Normalized Distribution

The differential weighting of sample data described above

is particularly important to take into account when there is

significant measurement noise in (some) samples. For exam-

ple, consider the problem of determining the phenotype of

antigen-responsive T cells (i.e., those that are cytokine-positive

following stimulation). Background subtraction is necessary

to determine the magnitude of this response. However, it is

not possible to use background subtraction when determining

the phenotype of the response (i.e., both stimulated and back-

ground cytokine-positive cells may be 100% CD4-positive;

subtracting this would result in 0%, which is clearly nonsensi-

cal). Furthermore, it is usually the case that the phenotype of

background-responding cells is different than antigen-

responding cells. In a sample where a majority of the respond-

ing cells are antigen-specific, the overall phenotype reflects

those cells since the contribution of background-cells is low.

But for samples with a low response magnitude, this is not the

case: in a sample where the magnitude of the positive response

is of the same magnitude as the background, half of the cells

in the phenotype analysis would be antigen-specific and half

would be background, yielding a mixed phenotype.

When constructing a representation of the phenotype of

antigen-responding cells from multiple subjects, inclusion of

low-response subjects will skew this phenotype to look more like

background cells. Here, perhaps, it is more desirable to display

un-normalized data, so those samples with ‘‘true’’ responses are

weighted more heavily and the average phenotype is more reflec-

tive of those responses. Another reasonable approach would be

to use normalized distributions, and eliminate samples from the

distribution where the magnitude of the responding cells was

less than (for example) three-fold that of the background.

An example of this is shown in Figure 3. In this experi-

ment, the phenotype (naı̈ve, central memory, transitional

Figure 2. Impact of normalization on visual displays. These are artificial datasets for illustration; they represent dividing up a T cell

response into three categories. (A) Data for two individuals is shown. The two individuals have different overall magnitude of the represen-

tation of the three categories of cells, but the response distributes identically into the categories. Hence, the pie charts that average the

results (top) are identical whether they use absolute, unnormalized data (left) or relative, normalized data (right). (B) Here, 10 individuals

are analyzed, one of whom is a sharp outlier from the other 9. The pie charts averaging the 10 individuals are very different when using

absolute numbers (left) vs. relative numbers (right). This is because the absolute representation weights each individual according to the

absolute representation of the subsets thus, Subject no. 10 is weighted almost 100-fold greater than the other subjects. The resulting aver-

aged pie chart looks similar to the pie chart for Subject no. 10, and not like the other nine. When averaging the normalized values (right),

Subject no. 10 is weighted equally to all others, and thereby contributes only 10% of the information. Hence, the average pie chart looks

very similar to the majority of subjects.
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memory, or terminal effector) of antigen-specific cells was

determined. Samples comprised PBMC from 49 individuals

stimulated with a variety of peptide pools, or left unstimu-

lated (background control). The phenotype of the back-

ground-population is different from the antigen-specific;

notably, there is a significant representation of naı̈ve T cells

that spontaneously produce cytokine. The phenotype of all

responders is different from this, with a P value of 0.03;

however, there are still a proportion of cells with a naı̈ve

phenotype. Because the responses are quite low in these

samples, this phenotype arises from the contribution of

samples with few or no antigen-specific cells that are still

being averaged into the entire mixture. Indeed, by separating

the cohort into those individuals with low responses (less

than three-fold above background) vs. high responses, this

effect becomes clear. In the high responders group, there are

no naı̈ve T cells contributing to the distribution, and the

statistical comparison (compared to control) becomes much

more significant. While not surprising, it is critical to recog-

nize that the averaging required to compute the size of each

pie slice Pi (see methods) gives equal weighting to low vs.

high responders, and that this skews the average phenotype

toward that of the background events.

The selection of samples with responders that are three-

fold above control is somewhat arbitrary; at this level, it guar-

antees that the contribution of background events to the phe-

notype is less than 25% (i.e., three-fold implies 75% specific

events, 25% background). Figure 3 also illustrates the profiles

for only those samples with responses that are 10-fold above

background. For these samples, the contribution of naı̈ve T

cells to the memory response is virtually eliminated, as pre-

dicted. Overall, the phenotype of these highly-enriched env-

specific cells is essentially identical to that seen with the sam-

ples that are three-fold above background, lending credibility

to this threshold as reasonable. Notably, the use of the far

more restrictive threshold reduces the number of samples to 8;

the smaller sample size results in less significance when com-

paring the phenotyping profiles.

Figure 3. Elimination of low-responders improves discrimination. The phenotype of all cytokine positive cells was determined; the fraction

that falls into a naı̈ve, central memory (CM), transitional memory (TM), effector memory (EM), or terminal effector (TE) memory subset is

shown in the bar chart and pie charts. Distributions are shown for the background (unstimulated) control, for all stimulated samples (sti-

mulated with HIV envelope peptides, Env), for those samples with Env responses less than three-fold above background, and for those

with responses greater than 3-fold or 10-fold above background. Note that the phenotype for a response that is three-fold above back-

ground would represent a mixture of cells that is 25% background and 75% antigen-specific. Bars show interquartile ranges for each mea-

surement. p values were computed using the permutation test described in the text, comparing each distribution against the control.
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Overall, Figure 3 illustrates that it is important to com-

pare the phenotype of the ‘‘positive’’ response with the ‘‘back-

ground’’ control, as well as to evaluate the effect of varying the

threshold of positivity. Finally, comparison of the profiles

obtained for samples that are above background but below the

threshold for ‘‘high positives’’ should be done to consider

whether the selected ‘‘high positive’’ responders are represen-

tative of the whole population.

DISCUSSION

Polychromatic flow cytometry gives us the ability to

divide the immune system into a large number of discrete sub-

sets. For example, measuring three cytokine responses in T

cells immediately results in 16 subsets (eight combinations of

all three cytokines, for both CD4 and CD8). Correlates analy-

sis attempts to identify whether any one (or a combination of

these) subsets is related to a biological or clinical measure.

During data exploration, this process is accomplished most

efficiently by pattern recognition—relying on the human brain

to pick out associations using graphical interfaces that aggre-

gate all of this information in some simplified forms.

As the complexity of the data set increases geometrically

by addition of additional measurements, such as additional

functions or phenotypic markers, we discovered that there

were no software tools available to easily display and compare

the patterns of distributions across different sample sets. In

addition, there was a need to easily reduce the complexity of

the data by collapsing different dimensions at will: for exam-

ple, to reduce the eight cytokine combinations (from three

functions) to four by disregarding the contributions of one of

the cytokines.

For this purpose, we developed the program SPICE. The

user interface in SPICE has been designed to easily select any

subset of categorical criteria for display, overlay, and/or statis-

tical analysis. These operations are termed ‘‘pivot’’ operations

in spreadsheet parlance; SPICE performs them in a user-

friendly, highly optimized fashion.

During the development of SPICE for the presentation

and analysis of data from our experiments, we discovered the

need to address how distributions are thresholded for display

in pie charts (a common display type for multicomponent dis-

tributions). Specifically, background-corrected assays common

in biology will result in negative values that cannot be prop-

erly represented in pie charts. We describe an approach to

select a threshold for zeroing measurement values that mini-

mizes systematic bias and maximizes the information content

from positive measurements. The magnitude of this threshold

should be reported when using this type of approach.

The comparison of distributions from individual cate-

gories in these complex datasets is fraught with danger of Type

1 statistical errors—i.e., mistakenly identifying a difference as

significant. This comes from the large number of comparisons

that can be easily performed. Researchers must be particularly

careful to correct for multiple comparisons when pre-specified

criteria were not set. To help overcome such bias, we

developed a statistical test that compares all of the distribu-

tions at once.

This algorithm is based on a chi-squared metric, and uses

a nonparametric partial permutation (Monte Carlo simula-

tion) to define how extreme the difference between two sam-

ple sets is. Currently, this comparison is not paired; we are

considering algorithms for implementing a paired version of

this test. In exploring datasets, we advocate only using com-

parisons on individual categories once an overall significant

difference based on the total distributions has been found.

A number of recent examples illustrate the power of this

statistical comparison. To date, most of the use has been to

distinguish the quality (functional repertoire) of HIV- or SIV-

specific T cells depending on therapy (15), clinical status (16–

20), or vaccine strategy (21,22). The statistic was also used to

show that alloreactive T cells in graft-vs.-host disease have a

unique functional profile (23), that tuberculosis-specific T cell

function changes following therapy (24), and that HIV-1 and

HIV-2 specific T cells differ in function and phenotype (25).

These examples illustrate the power of the ability to compare

multi-component measurements, particularly, by reducing the

comparison to a single test rather than comparing individual

components and requiring a correction for multiple compari-

sons.

In summary, we outline a number of algorithmic consid-

erations when analyzing complex data described by multiple

categories. We report on a freely-available, US Government-

supported application, SPICE, which implements these algo-

rithms in a user-friendly graphical interface. A supporting

program, Pestle, is also available to assist with data pre-proc-

essing, database merging, and data formatting. These pro-

grams represent a first step in the aggregation and analysis of

data from multiple flow cytometric analyses, i.e., post-cyto-

metric data analysis.
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